Diffusion of water and selected atoms in DMPC lipid bilayer membranes.

نویسندگان

  • F Y Hansen
  • G H Peters
  • H Taub
  • A Miskowiec
چکیده

Molecular dynamics simulations have been used to determine the diffusion of water molecules as a function of their position in a fully hydrated freestanding 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC) bilayer membrane at 303 K and 1 atm. The diffusion rate of water in a ∼10 Å thick layer just outside the membrane surface is reduced on average by a factor of ∼2 relative to bulk. For water molecules penetrating deeper into the membrane, there is an increasing reduction in the average diffusion rate with up to one order of magnitude decrease for those deepest in the membrane. A comparison with the diffusion rate of selected atoms in the lipid molecules shows that ∼6 water molecules per lipid molecule move on the same time scale as the lipids and may therefore be considered to be tightly bound to them. The quasielastic neutron scattering functions for water and selected atoms in the lipid molecule have been simulated and compared to observed quasielastic neutron scattering spectra from single-supported bilayer DMPC membranes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular dynamics simulation of interaction of Melittin and DMPC bilayer: Temperature dependence

The interaction between proteins and membranes has an important role in biological pro-cesses.We have calculated energies of interaction between Melittin and DMPC bilayer in differenttemperatures. We have used the CHARMM software for MD simulation under the canonical (N,V, E) ensemble at different temperatures. The computations have shown that water moleculeshave more penetration into the bilay...

متن کامل

Molecular Insight into the Mutual Interactions of Two Transmembrane Domains of Human Glycine Receptor (TM23-GlyR), with the Lipid Bilayers

Appearing as a computational microscope, MD simulation can ‘zoom in’ to atomic resolution to assess detailed interactions of a membrane protein with its surrounding lipids, which play important roles in the stability and function of such proteins. This study has employed the molecular dynamics (MD) simulations, to determine the effect of added DMPC or DMTAP molecules on the structure of D...

متن کامل

Cholesterol modulates the membrane effects and spatial organization of membrane-penetrating ligands for G-protein coupled receptors.

The ligands of certain G-protein coupled receptors (GPCRs) are membrane soluble and reach their target from the lipid bilayer. Lipid composition and dynamics will therefore modulate the activity of these receptors, but specific roles of lipid components, including the ubiquitous cholesterol (Chol), are not clear. We have probed the organization and dynamics of such a lipid-bilayer-penetrating l...

متن کامل

Structure and dynamics of water and lipid molecules in charged anionic DMPG lipid bilayer membranes.

Molecular dynamics simulations have been used to investigate the influence of the valency of counter-ions on the structure of freestanding bilayer membranes of the anionic 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) lipid at 310 K and 1 atm. At this temperature, the membrane is in the fluid phase with a monovalent counter-ion and in the gel phase with a divalent counter-ion. The diffusi...

متن کامل

Membrane penetration of nitric oxide and its donor S-nitroso-N-acetylpenicillamine: a spin-label electron paramagnetic resonance spectroscopic study.

S-nitroso-N-acetylpenicillamine (SNAP) is a pharmacological agent with diverse biological effects that are mainly attributable to its favorable characteristics as a nitric oxide (NO)-evolving agent. It is found that SNAP incorporates readily into dimyristoyl phosphatidylcholine (DMPC) bilayer membranes; and an approximate penetration profile was obtained from the depth dependence of the perturb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 137 20  شماره 

صفحات  -

تاریخ انتشار 2012